CVTTPD2DQ
Convert with Truncation Packed Double Precision Floating
| Opcode/Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
|---|---|---|---|---|
| 66 0F E6 /r CVTTPD2DQ xmm1, xmm2/m128 | A | V/V | SSE2 | Convert two packed double precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1 using truncation. |
| VEX.128.66.0F.WIG E6 /r VCVTTPD2DQ xmm1, xmm2/m128 | A | V/V | AVX | Convert two packed double precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1 using truncation. |
| VEX.256.66.0F.WIG E6 /r VCVTTPD2DQ xmm1, ymm2/m256 | A | V/V | AVX | Convert four packed double precision floating-point values in ymm2/mem to four signed doubleword integers in xmm1 using truncation. |
| EVEX.128.66.0F.W1 E6 /r VCVTTPD2DQ xmm1 {k1}{z}, xmm2/m128/m64bcst | B | V/V | AVX512VL AVX512F | Convert two packed double precision floating-point values in xmm2/m128/m64bcst to two signed doubleword integers in xmm1 using truncation subject to writemask k1. |
| EVEX.256.66.0F.W1 E6 /r VCVTTPD2DQ xmm1 {k1}{z}, ymm2/m256/m64bcst | B | V/V | AVX512VL AVX512F | Convert four packed double precision floating-point values in ymm2/m256/m64bcst to four signed doubleword integers in xmm1 using truncation subject to writemask k1. |
| EVEX.512.66.0F.W1 E6 /r VCVTTPD2DQ ymm1 {k1}{z}, zmm2/m512/m64bcst{sae} | B | V/V | AVX512F | Convert eight packed double precision floating-point values in zmm2/m512/m64bcst to eight signed doubleword integers in ymm1 using truncation subject to writemask k1. |
Instruction Operand Encoding
| Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
|---|---|---|---|---|---|
| A | N/A | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
| B | Full | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
Description
Converts two, four or eight packed double precision floating-point values in the source operand (second operand) to two, four or eight packed signed doubleword integers in the destination operand (first operand).
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a YMM/XMM/XMM (low 64 bits) register conditionally updated with writemask k1. The upper bits (MAXVL-1:256) of the corresponding destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:64) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
SR X3 X2 X1 X0 DEST 0 X3 X2 X1 X0
Figure 3-15. VCVTTPD2DQ (VEX.256 encoded version)
Operation
VCVTTPD2DQ (EVEX Encoded Versions) When SRC Operand is a Register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[k+63:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0
VCVTTPD2DQ (EVEX Encoded Versions) When SRC Operand is a Memory Source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 32
k := j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
ELSE
DEST[i+31:i] :=
Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[k+63:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0
VCVTTPD2DQ (VEX.256 Encoded Version)
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[95:64] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[191:128])
DEST[127:96] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[255:192)
DEST[MAXVL-1:128] := 0
VCVTTPD2DQ (VEX.128 Encoded Version)
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[MAXVL-1:64] := 0
CVTTPD2DQ (128-bit Legacy SSE Version)
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[127:64] := 0
DEST[MAXVL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPD2DQ __m256i _mm512_cvttpd_epi32( __m512d a);
VCVTTPD2DQ __m256i _mm512_mask_cvttpd_epi32( __m256i s, __mmask8 k, __m512d a);
VCVTTPD2DQ __m256i _mm512_maskz_cvttpd_epi32( __mmask8 k, __m512d a);
VCVTTPD2DQ __m256i _mm512_cvtt_roundpd_epi32( __m512d a, int sae);
VCVTTPD2DQ __m256i _mm512_mask_cvtt_roundpd_epi32( __m256i s, __mmask8 k, __m512d a, int sae);
VCVTTPD2DQ __m256i _mm512_maskz_cvtt_roundpd_epi32( __mmask8 k, __m512d a, int sae);
VCVTTPD2DQ __m128i _mm256_mask_cvttpd_epi32( __m128i s, __mmask8 k, __m256d a);
VCVTTPD2DQ __m128i _mm256_maskz_cvttpd_epi32( __mmask8 k, __m256d a);
VCVTTPD2DQ __m128i _mm_mask_cvttpd_epi32( __m128i s, __mmask8 k, __m128d a);
VCVTTPD2DQ __m128i _mm_maskz_cvttpd_epi32( __mmask8 k, __m128d a);
VCVTTPD2DQ __m128i _mm256_cvttpd_epi32 (__m256d src);
CVTTPD2DQ __m128i _mm_cvttpd_epi32 (__m128d src);
SIMD Floating-Point Exceptions
Invalid, Precision.
Other Exceptions
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-46, “Type E2 Class Exception Conditions.”
Additionally:
| #UD | If VEX.vvvv != 1111B or EVEX.vvvv != 1111B. |
|---|
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be incomplete or broken in various obvious or non-obvious ways. Refer to Intel® 64 and IA-32 Architectures Software Developer’s Manual for anything serious.